

t-Bu₃P-Coordinated 2-Phenylaniline-Based Palladacycle Complex as a Precatalyst for the Suzuki Cross-Coupling Polymerization of Aryl Dibromides with Aryldiboronic Acids

Hong-Hai Zhang, Chun-Hui Xing, Georges Bouobda Tsemo, and Qiao-Sheng Hu*

Department of Chemistry, College of Staten Island, and the Graduate Center, City University of New York, Staten Island, New York 10314, United States

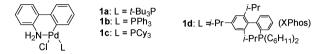
Supporting Information

ABSTRACT: *t*-Bu₃P-coordinated 2-phenylaniline-based palladacycle complex, [2'-(amino-kN)[1,1'-biphenyl]-2-yl-kC]chloro(tri*t*-butylphosphine)-palladium, as a general, highly efficient precatalyst for the Suzuki cross-coupling polymerization of aryl dibromides with aryldiboronic acids is described. Such *t*-Bu₃P-coordinated 2-aminobiphenyl-based palladacycle complex-catalyzed Suzuki cross-coupling polymerization afforded polymers

	$\frac{\text{Br}-\text{Ar}-\text{Br}}{\text{H}} \xrightarrow{2 \mod \% \text{A}} + \frac{2 \mod \% \text{A}}{\text{K}_3 \text{PO}_4, \text{THF}} + \frac{\text{Ar}-\text{Ar}}{\text{H}} + \frac{1}{n}$ $\frac{\text{B}-\text{Ar}'-\text{B}(\text{OH})_2}{60 \ ^\circ\text{C}, 1 \ \text{h}} \ 85-99\% \text{ yields}$ $\frac{1}{n} = 10 \ \text{Ar} + \frac{1}{n} = 10 \$
(A)	up to M _n = 89 800

within an hour, with the yields and the molecular weights comparable to or higher than that of polymers obtained by using other palladium catalysts with much longer polymerization time. Our study provided a highly efficient catalyst system for the Suzuki cross-coupling polymerization of aryl dihalides with aryldiboronic acids. Our study also paved the road for us to investigate other monodentate ligand-coordinated palladacycle complexes including *N*-heterocyclic carbene-coordinated ones for cross-coupling polymerizations.

he Pd(0)-catalyzed Suzuki cross-coupling polymerization (SCCP) of aryl dihalides with aryldiboronic acids/acid esters has become arguably the most powerful method for the synthesis of an array of poly(arylene)s,^{1,2} which are useful materials with applications in fields ranging from semiconductors and sensors to optoelectronics. Despite the widespread applications, reported SCCPs often suffered from shortcomings including lengthy reaction time, typically 24 h or longer even under refluxing conditions, low polymerization yields, and difficulty achieving high molecular weight (degree of polymerization).³ Scrutiny of reported SCCPs suggested that these shortcomings can mainly be attributed to the direct Pd catalyst adoption approach: the palladium catalysts employed for the SCCPs were commonly adopted directly from the Suzuki cross-coupling reactions of aryl halides and arylboronic acids. Unlike the standard Suzuki cross-coupling reactions, in which only one catalytic cycle is involved for the product formation, multiple consecutive catalytic cycles are involved for the product formation in the SCCPs. Such a Pd catalyst adoption approach amplifies problems that may not be pronounced for standard Suzuki cross-coupling reactions, for example, low catalytic activities of the catalysts, the decomposition of the catalysts, and so on, causing the aforementioned shortcomings for the SCCPs. Development of palladium catalysts that can attenuate the problems caused by the multiple consecutive catalytic cycle nature of polymerization is expected to overcome shortcomings associated with reported palladium catalysts for the SCCP and could thus be valuable for the field of conjugated polymer synthesis.


We speculated that the problems caused by the direct Pd catalyst adoption approach might in large part be due to the relatively low catalytic activity of reported Pd catalysts, which

rendered the oxidative addition step in reported SCCPs likely the rate-determining step. The slow oxidative addition would allow the Pd(0) catalyst to decompose and the amplification of such a catalyst decomposition would cause aforementioned shortcomings for reported SCCPs. We thus reasoned that Pd(0) catalysts with high oxidative addition rates, for example, 12-electron LPd(0) species with bulky, electron-rich monodentate ligands such as t-Bu₃P,^{4,5} could alter the ratedetermining step from the oxidative addition step to the transmetalation step. Such a switch could minimize the catalyst decomposition and might address the problems caused by the multiple consecutive catalytic cycle nature of polymerization. Thus, 12-electron LPd(0) species with bulky, electron-rich monodentate ligands, such as *t*-Bu₃P, could be efficient catalysts for the Suzuki cross-coupling polymerizations. Based on the consideration that the generation of 12-electron LPd(0) species should not involve the participation of AA or BB monomers, which could alter the ratio and the nature of the monomers, and recent elegant reports on generating Pd(0) species from palladacycle complexes and bases,^{6,7} we envisioned that monodentate ligand-coordinated palladacycle complexes 1 could be suitable precatalysts to generate the desired 12electron LPd(0) catalysts for the SCCP (Scheme 1). In this communication, we report our preliminary results on establishing t-Bu₃P-coordinated 2-phenylaniline-based palladacycle complex 1a, as well as three other monophosphine-coordinated palladacycles $\mathbf{1b}-\mathbf{d}^{7-9}$ (Chart 1), as a general, highly efficient precatalyst for the fast Suzuki cross-coupling polymerization.

```
Received: September 18, 2012
Accepted: December 11, 2012
Published: December 14, 2012
```

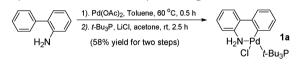

Scheme 1. Monodentate Ligand-Coordinated 2-Phenylaniline-Based Palladacycle Complexes for Suzuki Cross-Coupling Polymerizations

Chart 1. Monophosphine-Coordinated 2-Phenylaniline-Based Palladacycle Complexes

t-Bu₃P-coordinated 2-phenylaniline-based palladacycle complex **1a** was prepared from 2-phenylaniline in 58% yield by a one-pot, two-step sequence (Scheme 2), similar to the reported synthesis of **1b** and **1d**.^{7–9} Compound **1a** is air/moisture-stable, and **1c** was prepared in a similar way with a moderate yield from $Cy_3P.^9$

Scheme 2. Preparation of *t*-Bu₃P-Coordinated 2-Phenylaniline-Based Palladacycle Complex 1a

Based on the consideration that the transmetalation step could likely be the rate-determining step with 12-electron (t- $Bu_3P)Pd(0)$ species as the catalysts and could be influenced by a base, our study began with the examination of different bases for the polymerization of dibromide 2a and diboronic acid 3a. The polymerizations were performed in THF at 60 °C for 1 h. We found with 1a as the precatalyst, among the bases examined (entries 1-5), K₂CO₃, K₃PO₄, and K₂HPO₄ were found to be good bases (Table 1, entries 1, 4, 5), with K_3PO_4 being the best one (Table 1, entry 4). Further examination revealed the use of 4 equiv of K₃PO₄ generated the polymer with the highest molecular weight (Table 1, entries 4, 6-8). Palladium catalysts derived from $Pd_2(dba)_3/t-Bu_3P(0.5:1)$, $Pd_2(dba)_3/t-Bu_3P(0.5:2)$, ¹⁰ $Pd(t-Bu_3P)_2$, ¹¹ $PhPd(t-Bu_3P)Br$, ¹² and $[t-t]_{t-1}$ $Bu_3PPdBr]_2^{13}$ were also employed for the polymerization under the same reaction condition. These Pd catalysts exhibited much lower catalytic efficiency than palladacycle complex 1a, as evidenced by the much lower molecular weights of the products $(M_{\rm n} = 2300-3900)$ (Table 1, entries 9–13). For comparison purposes, other monophosphine-coordinated 2-aminobiphenylbased palladacycle complexes 1b,⁸ 1c,⁹ and 1d,^{7b} Pd(PPh₃)₄, Pd(OAc)₂/XPhos (1:2), Pd₂(dba)₃/XPhos (0.5:2), Pd(OAc)₂/ XPhos (1: 1), Pd₂(dba)₃/XPhos (0.5:1), Pd(OAc)₂/o-Tol₃P (1:1), and $Pd(OAc)_2/o-Tol_3P$ (1:2)^{3d} complexes were also employed for the polymerization under the same reaction condition. We found that while these Pd catalysts exhibited much lower catalytic efficiency than 1a, as evidenced by the much lower molecular weights of the products ($M_{\rm p} = 1900-$ 8900; Table 1, entries 14-23), palladacycle complexes 1b and 1d were again observed to exhibit higher catalytic efficiency over conventional Pd catalysts Pd(PPh₃)₄, Pd(OAc)₂/XPhos, $Pd_2(dba)_3/XPhos, and Pd(OAc)_2/o-Tol_3P$ (1:2) (Table 1, entry 14 vs 15; entry 17 vs 18-21). These results demonstrated

Table 1. Pd-Catalyzed Suzuki Cross-Coupling Polymerization^a

		R 2 mol% Pd C	Catalyst						
Br-	[⊉] (2•)) (1	B(OH) ₂ Base, TI	_{⊣F} ≻ ├∕_≻	-∕_≻¦n					
RÓ	(2a) RO (60 °C, 1		$(R = n - C_6 H_{13})$					
entry	catalyst	base	yield (%) ^b	$M_{\rm n} ({\rm PDI})^c$					
1	la	K ₂ CO ₃ (4 equiv)	74	19400 (2.33)					
2	la	Na ₂ CO ₃ (4 equiv)	69	3400 (1.47)					
3	1a	KF (4 equiv)	54	2600 (1.28)					
4	la	K ₃ PO ₄ (4 equiv)	85	20100 (2.25)					
5	la	K ₂ HPO ₄ (4 equiv)	75	19000 (2.23)					
6	la	K ₃ PO ₄ (2 equiv)	50	2100 (1.28)					
7	1a	K ₃ PO ₄ (3 equiv)	50	2000 (1.11)					
8	1a	K ₃ PO ₄ (6 equiv)	74	18500 (2.37)					
9	$Pd_2(dba)_3 + t-Bu_3P$ (0.5:2)	K ₃ PO ₄ (4 equiv)	30	2300 (1.05)					
10	$Pd_2(dba)_3 + t-Bu_3P$ (0.5:1)	K ₃ PO ₄ (4 equiv)	60	3900 (1.48)					
11	$Pd(t-Bu_3P)_2$	K ₃ PO ₄ (4 equiv)	51	2600 (1.22)					
12	$PhPd(t-Bu_3P)Br$	K_3PO_4 (4 equiv)	58	2700 (1.27)					
13	[<i>t</i> -Bu ₃ PPdBr] ₂	K_3PO_4 (4 equiv)	51	3100 (1.35)					
14	1b	K ₃ PO ₄ (4 equiv)	41	2600 (1.14)					
15	$Pd(PPh_3)_4$	K ₃ PO ₄ (4 equiv)	32	1200 (1.13)					
16	1c	K ₃ PO ₄ (4 equiv)	33	2500 (1.05)					
17	1d	K_3PO_4 (4 equiv)	89	8900 (2.42)					
18	$Pd_2(dba)_3 + Xphos$ (0.5:2)	K_3PO_4 (4 equiv)	68	2200 (1.46)					
19	$Pd(OAc)_2 + Xphos$ (1:2)	K_3PO_4 (4 equiv)	64	2600 (1.47)					
20	$Pd_2(dba)_3 + Xphos (0.5:1)$	K_3PO_4 (4 equiv)	55	2900 (1.65)					
21	$Pd(OAc)_2 + Xphos$ (1:1)	K_3PO_4 (4 equiv)	72	1900 (1.27)					
22	$Pd(OAc)_2 + o Tol_3P$ (1:1)	K_3PO_4 (4 equiv)	64	2900 (1.41)					
23	$Pd(OAc)_{2} + o Tol_{3}P$ (1:2)	K_3PO_4 (4 equiv)	69	2500 (1.29)					
$\frac{d\mathbf{D}}{d\mathbf{D}} = \frac{d\mathbf{D}}{d\mathbf{D}} = \frac{d\mathbf{D}}{d$									

^{*a*}Polymerization condition: diboronic acid (1 equiv), dibromide (1.02 equiv), Pd catalyst (2 mol %), base (1–4 equiv), THF, 60 °C, 1 h. ^{*b*}Isolated yield. ^{*c*}GPC analysis (polystyrene as standard, THF, 40 °C).

t-Bu₃P-coordinated 2-aminobiphenyl-based palladacycle complex **1a** was a highly efficient precatalyst for the SCCPs.

With *t*-Bu₃P-coordinated 2-aminobiphenyl-based palladacycle complex 1a as the precatalyst, the Suzuki cross-coupling polymerization of a number of aryl dibromides with aryldiboronic acids were examined and our results are listed in Table 2. As shown in Table 2, 1a-catalyzed Suzuki crosscoupling polymerization afforded polymers in high yields within an hour, with the molecular weights of the polymers in the range that would require the polymerization time of 24 h or longer for polymerization processes catalyzed by other Pd catalysts (Table 2, entries 1-10). For direct comparison purposes, the Suzuki cross-coupling polymerization of (3,5Table 2. Palladacycle Complex 1a-Catalyzed Suzuki Cross-
Coupling Polymerization of Aryl Dibromides with
Aryldiboronic Acids a

				2 mol% 1a		⊥^r_^r
$Br-Ar-Br + (HO)_2B-Ar'-B(OH)_2$				K ₃ PO ₄ , THF, 60 °C 1 h		+Ar−Ar'}n
Entry	/ Br—	-Ar-Br	(HO) ₂ B—Ar	'-B(OH) ₂	Yield ^b	M _n (PDI) ^c
1 <i>n</i>	Br	On-C ₆ H ₁₃	(HO) ₂ B-	On-C ₆ H ₁₃ -B(OH) ₂ (3a)	85%	19 800 (2.30)
2	2	2a (H(0) ₂ B-	B(OH) ₂ (3b) n-C ₆ H ₁₃	93%	11 200 (2.28)
3	Br—	Br (2b)	3b		99%	43 000 (2.54)
4	Br) Br (2c)	3a		95%	8 800 (1.98)
5	Br-	Br (2d) n-C ₆ H ₁₃	3a		87%	20 700 (2.39)
6		d	3b		90%	19 100 (2.94)
7	3r-{ <i>n</i> -C ₈ H ₁₇	Br (2e) n-C ₈ H ₁₇	3a		97%	19 400 (2.39)
8	2	le	3b		99%	43 000 (2.20) ^d
9	Fe	OH Br Br	3a	0 (94%	8 200 (1.70)
10	2	le I	O <i>n</i> -C ₈ H ₁₇	n-C ₈ H ₁₇ (3c)	99%	82 900 (2.36)
11	2	!d	3b		99%	49 400 (3.81) ^e
12	2	le.	3b		99%	89 800 (2.44)

^{*a*}Polymerization condition: dibromide (1.02 equiv), diboronic acid (1 equiv), Pd catalyst (2 mol %), K_3PO_4 (4 equiv), THF, 60 °C, 1 h. ^{*b*}Isolated yields. ^{*c*}GPC analysis (polystyrene as standard, THF, 40 °C; average of two runs). ^{*d*}Reaction time: 20 min. ^{*c*}Reaction time: 2 h.

dibromophenyl)ferrocenylmethanol (2f) with 2,5-dihexoxy-1,4phenyldiboronic acid (3a) and 2,7-dibromo-9,9-dioctylfluorene (2e) with 9,9-dihexyl-2,7-fluorenyldiboronic acid (3b) were also examined. We found that 1a-catalyzed polymerization of 2f with 3a afforded a polymer with a molecular weight of $M_{\rm p}$ = 8200 (GPC value, polystyrene standards; Table 2, entry 9), whereas Pd(PPh₃)₄-catalyzed polymerization of 2f with 3a generated a polymer with a molecular weight of $M_{\rm p} = 2800$ under the condition of refluxing 24 h in THF- H_2O .^{3f} 1a-Catalyzed polymerization of 2e with 3b produced the polymer with a molecular weight of $M_n = 82900$ (Table 2, entry 10), which was comparable to the molecular weights obtained by using other palladium catalysts with much longer polymerization time (50 °C, 3 days, or 90 °C, 24 h).^{14,15} These results further confirmed 1a was a highly efficient precatalyst for the SCCP. In addition, polymers with higher molecular weights could be readily obtained by simply lengthening the reaction time (Table 2, entries 7 vs 11, 8 vs 12), demonstrating the stability of 1a under the Suzuki cross-coupling polymerization and its ability to catalyze the Suzuki cross-coupling polymerization with high degree of polymerization.

In summary, based on the hypothesis that the use of 12electron LPd(0) species as catalysts for the SCCP could alter the rate-determining step from the oxidative addition step to the transmetalation step and could overcome the problems associated with reported Pd catalysts for SCCP, we demonstrated that readily available, air/moisture-stable tBu₃P-coordinated 2-aminobiphenyl-based palladacycle complex, [2'-(amino-kN)[1,1'-biphenyl]-2-yl-kC]chloro(trit-butylphos-phine)palladium, was a general, highly efficient precatalyst for the Suzuki cross-coupling polymerization of aryl dibromides with aryldiboronic acids. Such *t*-Bu₃P-coordinated 2-phenylaniline-based palladacycle complex-catalyzed Suzuki cross-coupling polymerization afforded polymers within an hour, with the yields and molecular weights comparable to or higher than that of polymers obtained by using other palladium catalysts with much longer polymerization time (24 h or longer under refluxing conditions). Our study provided a highly efficient precatalyst for the Suzuki cross-coupling polymerization of aryl dihalides with aryldiboronic acids. This t-Bu₂P-coordinated 2aminobiphenyl-based palladacycle complex might also be useful for other cross-coupling reactions including polymerizations. In addition, our study paved the road for us to investigate other monodentate ligand-coordinated palladacycle complexes, including N-heterocyclic carbene-coordinated ones⁵ for crosscoupling polymerizations. Work toward these directions is currently under way.

ASSOCIATED CONTENT

S Supporting Information

General procedures and product characterization of Pd(0)catalyzed cross-coupling polymerization of aryl dibromides and aryldiboronic acids. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: qiaosheng.hu@csi.cuny.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully thank the NSF (CHE0911533) and NIH (1R15 GM094709) for funding. Partial support from PSC-CUNY Research Award Programs is also acknowledged.

REFERENCES

(1) For recent reviews on Suzuki cross-coupling reactions: (a) Miyaura, N. *Top. Curr. Chem.* **2002**, *219*, 11–59. (b) Suzuki, A. *J. Organomet. Chem.* **1999**, 576, 147–168. (c) Littke, A. F.; Fu, G. C. *Angew. Chem., Int. Ed.* **2002**, *41*, 4176–4211. (d) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. *Chem. Rev.* **2009**, *109*, 3612–3676. (e) Darses, S.; Genet, J.–P. *Chem. Rev.* **2008**, *108*, 288–325. (f) Yin, L.; Liebscher, J. *Chem. Rev.* **2007**, *107*, 133–173.

(2) For recent reviews on Suzuki cross-coupling polymerizations: (a) Hu, Q.-S.; Pu, L. In *Polymeric Chiral Catalyst Design and Chiral Polymer Synthesis*; Itsuno, S., Ed.; Wiley: Hoboken, NJ, 2011; pp 323–364. (b) Sakamoto, J.; Rehahn, M.; Wegner, G.; Schlueter, A. D. *Macromol. Rap. Commun.* 2009, 30, 653–687. (c) Hu, Q.-S. In *Synthetic Methods for Step-Growth Polymers*; Rogers, M., Long, T., Eds.; Wiley: Hoboken, NJ, 2003; pp 467–526. (d) Schlüter, A. D. *J. Polym. Sci., Polym. Chem. Ed.* 2001, 39, 1533–1556.

(3) For recent examples, (a) Goodson, F. E.; Wallow, T. I.; Novak, B. M. Macromolecules **1998**, *31*, 2047–2056. (b) Hargadon, M. T.; Davey, E. A.; McIntyre, T. B.; Gnanamgari, D.; Wynne, C. M.; Swift, R. C.; Zimbalist, J. R.; Fredericks, B. L.; Nicastro, A. J.; Goodson, F. E. Macromolecules **2008**, *41*, 741–750. (c) Park, M.-J.; Lee, J.; Park, J.-H.; Lee, S. K.; Lee, J.-I.; Chu, H. Y.; Hwang, D.-H.; Shim, H.-K. Macromolecules **2008**, *41*, 3063–3070. (d) Murage, J.; Eddy, J. W.; Zimbalist, J. R.; McIntyre, T. B.; Wagner, Z. R.; Goodson, F. E. Macromolecules **2008**, *41*, 7330–7338. (e) Kappaun, S.; Zelzer, M.;

Bartl, K.; Saf, R.; Stelzer, F.; Slugovc, C. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2130–2138. (f) Hu, Q.-S.; Tang, Z.-Y.; Lu, Y.; Yu, H.-B. J. Am. Chem. Soc. 2003, 125, 2856–2857.

(4) For recent reviews on LPd(0) complexes with t-Bu₃P as ligand for cross-coupling reactions: (a) Fu, G. C. Acc. Chem. Res. **2008**, 41, 1555–1564. (b) Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. **2005**, 44, 366–374. (c) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. **2002**, 41, 4176–4211.

(5) For recent reviews on LPd(0) complexes with N-heterocyclic carbenes as ligands for cross-coupling reactions: (a) Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449. (b) Würtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523–1533. (c) Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768–2813. (d) Díez-González, S.; Nolan, S. P. Top. Organomet. Chem. 2007, 21, 47–82.

(6) For recent reviews of palladacycles for cross-coupling reactions: (a) Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527–2572. (b) Beletskaya, I. P.; Cheprakov, A. V. J. Organomet. Chem. 2004, 689, 4055–4082. (c) Bedford, R. B. Chem. Commun. 2003, 1787–1796.

(7) (a) Biscoe, M. R.; Fors, B.; Buchwald, S. L. J. Am. Chem. Soc.
2008, 130, 6686-6687. (b) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J.
Am. Chem. Soc. 2010, 132, 14073-14075. Also, see (c) Li, P.-F.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 6396-6400. (d) Shu,
W.; Pellegatti, L.; Oberli, M. A.; Buchwald, S. L. Angew. Chem., Int. Ed.
2011, 50, 10665-10669. (e) Noel, T.; Musacchio, A. J. Org. Lett.
2011, 13, 5180-5183. (f) Kim, J.; Movassaghi, M. J. Am. Chem. Soc.
2011, 133, 14940-14943. (g) Koenig, M.; Reith, L. M.; Monkowius,
U.; Knoer, G.; Bretterbauer, K.; Schoefberger, W. Tetrahedron 2011,
67, 4243-4252. (h) Schmink, J. R.; Krska, S. W. J. Am. Chem. Soc.
2011, 133, 19574-19577. (i) Molander, G. A.; Trice, S. L. J.;
Kennedy, S. M.; Dreher, S. D.; Tudge, M. T. J. Am. Chem. Soc. 2012,
134, 11667-11673. (j) VanVeller, B.; Schipper, D. J.; Swager, T. M. J.
Am. Chem. Soc. 2012, 134, 7282-7285.

(8) Albert, J.; Granell, J.; Zafrilla, J.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 2005, 690, 422-429.

(9) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem. 2012, 77, 658–668.

(10) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020-4028.

(11) (a) Yoshida, T.; Otsuka, S. J. Am. Chem. Soc. **1977**, 99, 2134–2140. Also, see (b) Paul, F.; Patt, J.; Hartwig, J. F. Organometallics **1995**, 14, 3030–3039.

(12) Huang, W.; Su, L.; Bo, Z. J. Am. Chem. Soc. 2009, 131, 10348-10349.

(13) (a) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2002, 41, 4746–4748. Also, see (b) Proutiere, F.; Aufiero, M.; Schoenebeck, F. J. Am. Chem. Soc. 2012, 134, 606–612.

(14) Eddy, J. W.; Davey, E. A.; Malsom, R. D.; Ehle, A. R.; Kassel, S.; Goodson, F. E. *Macromolecules* **2009**, *42*, 8611–8614.

(15) Liu, J.; Shao, S.; Chen, L.; Xie, Z.; Cheng, Y.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. Adv. Mater. **2007**, *19*, 1859–1863.